
Journal of Robotics Research (JRR)

Volume 1, Issue 1, Date: 22 - September - 2024

 31

 Received: 30-6-2024

 Revised: 3-9-2024

 Published: 22-9-2024
This article is freely accessible under the Creative Commons Attribution License, allowing for its use, distribution, and reproduction in any format, as long as

the original work is correctly cited. © 2024 The Authors.

Low Cost Control of Robotic Arms
Rahul Basu, Emeritus Professor

JNTU,Bangalore 560093

Orcid:0000-0002-6179-1163

Abstract—This paper presents the practical implementation of a

Kalman filter algorithm for state estimation on the Taiwan OWI

robotic arm. The study highlights the integration of low-cost tools

such as Arduino, HC-05 Bluetooth Module, and L298N Motor

Driver Module in controlling the robotic arm. Key contributions

include a novel approach to trajectory planning and path correction

using imitation learning. The paper provides detailed

methodologies for trajectory calculation, the role of the Extended

Kalman Filter (EKF) in state estimation, and the application of AI

techniques to enhance robotic arm autonomy. The results

demonstrate the feasibility and effectiveness of the proposed

methods, paving the way for more sophisticated robotic

applications.

Keywords—Autonomous, Feedback, Kalman Filter, Robotic

Arm, Vision

 I. INTRODUCTION

 The advent of Artificial Intelligence (AI) and Machine

Learning (ML) technologies has revolutionized various

sectors, including space exploration. This paper focuses on

these technologies in controlling robotic arms for space and

other missions. Robotic arms have become an integral part

of space missions, aiding in tasks ranging from sample

collection to spacecraft repair. Integration of AI/ML

technologies has further enhanced their capabilities,

enabling autonomous functions and system-level

capabilities. This paper discusses the application of

programming by demonstration or imitation learning for

trajectory planning of manipulators on free-floating

spacecraft. The control of these robotic arms has been made

more accessible and efficient through Bluetooth

technology.

 Recent advances by experimenters include the design and

development of a Bluetooth Controlled Robot using

Arduino, HC-05 Bluetooth Module, and L298N Motor

Driver Module. The use of Arduino, HC-05 Bluetooth

Module, and L298N Motor Driver Module represents an

advanced yet cost-effective approach to robotic arm control.

These components enable precise and reliable control over

the Taiwan OWI robotic arm, making it suitable for both

educational and research purposes. It also explores the use

of a dedicated Android app for controlling the robotic arm.

The incorporation of AI using algorithms like the cost of

trajectory and weightage, vision sensors, Kalman filters,

and other aids has yet to be developed as a project for this

low-cost application. The ultimate goal is to lead to full

autonomy for such devices, [1, 2]. 'Full autonomy,' refers

to the robotic arm's ability

to perform tasks without human intervention. This includes

autonomous path planning, obstacle avoidance, and

decision-making based on real-time data from sensors.

 The Taiwan OWI robotic arm is a low-cost device

controlled using Bluetooth technology. An Arduino Mega

can control the OWI robot arm kit through a phone. This

involves adding the user to the Bluetooth group for access

and installing the necessary dependencies. [3].These

methods highlight the flexibility and versatility of

Bluetooth technology in controlling robotic arms like the

Taiwan OWI.

 The unique aspects of the paper lie in the use of simple low-

cost tools to utilize advanced technological concepts.

A. OBJECTIVE

 The objective of this paper is to present a practical

implementation of the Kalman filter algorithm for state

estimation in dynamic systems. By illustrating the process

through a step-by-step example using a simple constant

acceleration model, the paper aims to demonstrate how the

Kalman filter can effectively integrate noisy measurements

to produce accurate state estimates. This includes a detailed

explanation of the mathematical foundations, the

algorithm's application, and the visualization of results

through graphing routines. The ultimate goal is to provide a

clear and comprehensive guide to serve as a reference for

researchers and practitioners in fields such as robotics,

navigation, and control systems.

 In this study, AI is applied through imitation learning and

regression for path planning, where the robotic arm learns

from expert demonstrations. The learning algorithm enables

the arm to adapt to new trajectories with minimal human

intervention. This AI-driven approach significantly

enhances the efficiency of the trajectory planning process

and contributes to the robotic arm's autonomy

 II. DISCUSSION

 In the realm of space exploration, the autonomy of robots

is a critical area of focus. This study introduces a novel

approach to trajectory planning for manipulators on

spacecraft, utilizing programming by demonstration or

imitation learning. The trajectory planning method

leverages programming by demonstration or imitation

learning. This method minimizes attitudinal changes during

the robotic arm's operation, reducing the load on the

Attitude Determination and Control System (ADCS). The

paper details the algorithmic approach usage and its

implementation, demonstrating how it optimizes the robotic

arm's movements. A sophisticated 7-DoF robotic arm,

attached to a compact spacecraft, is used for various tasks

Journal of Robotics Research (JRR) 32

Rahul Basu, Low Cost Control of Robotic Arms

such as debris removal, on-orbit servicing, assembly, and

autonomous docking [2]. The movement of the robotic arm

influences the spacecraft’s attitude, necessitating corrective

actions from the Attitude Determination and Control

System (ADCS). The proposed method identifies the

optimal trajectory that minimizes these changes, thereby

reducing the ADCS load. Power consumption, a crucial

factor in spacecraft trajectory planning and control, is

addressed by conducting trajectory learning offline. This

process involves gathering data from demonstrations and

encoding it into a probabilistic distribution of trajectories.

This distribution can then be used in planning in new

situations, requiring minimal power for computations after

deployment. The study also introduces a cost term to

identify the optimal trajectory that minimizes attitudinal

changes. This comprehensive approach to trajectory

planning could pave the way for more efficient and

autonomous space missions in the future.

Fig. 1. Taiwan OWI Robot configuration.

 The paper gives special attention to the Taiwan OWI, a

significant player in Robotics. Despite the political

complexities surrounding Taiwan, it continues to make

strides in technological advancements. The paper aims to

shed light on how these advancements can contribute to the

broader field of space exploration.

 A detailed explanation of the imitation learning

algorithm is provided in Section X. The algorithm can be

trained using a dataset obtained from expert

demonstrations, which includes various scenarios

encountered during the robotic arm's operation. The training

process encodes these demonstrations into a probabilistic

model.

A Novel Approach to Trajectory Planning

 This study introduces a novel approach to trajectory

planning by leveraging the Extended Kalman Filter (EKF)

in combination with particle swarm optimization (PSO).

The EKF is used for real-time state estimation, providing

accurate predictions of the robotic arm's position and

velocity. Simultaneously, PSO is applied to optimize the

trajectory, minimizing the energy consumption and

computational load. This dual approach not only ensures

precise movement but also enhances the overall efficiency

of the robotic arm, making it suitable for applications that

require high levels of accuracy and reliability.

B. Trajectory Calculation

 Calculation involves moving a robotic arm from an initial

to a set position by changing the joint angle. This is crucial

in modern applications like bin-picking, which aims to pick

randomly placed objects. The process uses modified

trajectory metrics to compute collision-free trajectories.

PSO (Particle Swarm Optimization) is described for

trajectory planning by [4]. Vision-based trajectory planning

is described by [5]. The trajectory calculation section is

expanded to include a detailed description of the methods

used to compute collision-free paths. Specifically, the

Particle Swarm Optimization (PSO) method is discussed,

along with its implementation details. Additionally, the use

of the Extended Kalman Filter (EKF) as the sole method for

the predictor-corrector algorithm is explained, including its

limitations and how it enhances the system's accuracy

C. Predictor-Corrector Algorithms:

 Kalman Filter Tools are powerful algorithms for

estimating and predicting system states in uncertain

conditions, in applications like target tracking, navigation,

and control. In robotic arms, they estimate the system state

(e.g., arm position and velocity) based on observed

measurements over time. The filter combines the predicted

system state and the latest measurement in a weighted

average, producing more precise estimates. They are

widely used in Robotics, particularly for autonomous

robots and robot arms, for state estimation [6, 7]. State

estimation is the problem of accurately determining

variables about the robot, such as its position concerning

some global frame, velocity, acceleration, IMU biases, and

other dynamical variables, given the robot’s sensors and

physics kinematics. The standard Kalman Filter works well

for linear systems [7]. However, many systems in robotics

are nonlinear [6]. To handle these nonlinear systems, the

Extended Kalman Filter (EKF) is often used. The EKF is a

nonlinear full-state estimator that approximates the state

estimate with the lowest covariance error when given the

sensor measurements, the model prediction, and their

variances [6].

 For instance, in autonomous mobile robot competitions,

accurate localization is crucial for creating an autonomous

competition robot. Two common localization methods are

odometry and computer vision landmark detection.

Odometry provides frequent velocity measurements, while

landmark detection provides infrequent position

measurements. The state can also be predicted with a

physics model. These three types of localization can be

“fused” to create a more accurate state estimate using an

Extended Kalman Filter (EKF).

D. Imitation Learning and Expert Experiments

 The robotic arm was trained using imitation learning,

where expert demonstrations were utilized to teach the

system the desired paths and movements. These

demonstrations were encoded into a probabilistic

distribution, allowing the arm to generalize and adapt to

new situations. The expert experiments involved a series of

predefined tasks, such as object manipulation and obstacle

avoidance, which were recorded and used as training data.

Journal of Robotics Research (JRR) 33

Rahul Basu, Low Cost Control of Robotic Arms

The resulting model enables the robotic arm to perform

these tasks accurately, even in dynamic environments.

E.Technological Advancements in Robotic Arm Design

 The development of the Taiwan OWI robotic arm

incorporates several technological advancements aimed at

enhancing its functionality and ease of use. Key

components such as the Arduino Mega, HC-05 Bluetooth

Module, and L298N Motor Driver Module were selected

for their affordability and versatility. These components

enable wireless control of the robotic arm, simplifying the

user interface and expanding its application in various

environments. The integration of these technologies

demonstrates how low-cost tools can be effectively utilized

to create advanced robotic systems capable of autonomous

operation.

 In recent years, there have been significant advancements

in Robotics, such as Boston Dynamics' Spot, Da Vinci

surgical robot, Tesla's Autopilot, and more. These

advancements have further highlighted the importance of

state estimation and the role of Kalman Filters. Kalman

Filters and EKFs have limitations and assumptions to be

considered when implementing them in real-world

applications. For example, velocity error will accumulate in

position when using odometry. Therefore, understanding

these limitations and assumptions effectively using these

tools in robotics is important. The Kalman Filter is based

on mathematical formulas that iteratively update estimates

primarily based on new measurements. The following is a

simplified rationalization of the fundamental equations

within the Kalman Filter:

a. Prediction Step

State Prediction:

 (1)

Covariance Prediction:

 (2)

 Here, is the predicted state at time (k),

 is the estimated state at time (k-1), (F) is the

state transition matrix, (B) is the control input matrix, (uk-

1) is the control input at time (k-1), is the predicted

state covariance, and (Q) is the process noise covariance.

b. Update Step:

Kalman Gain:

 (3)

State Update:

 (4)

Covariance Update:

 (5)

 The notation used in the equations is clarified to

distinguish between current and predicted states. For

instance, x^k represents the current state, while x^k/k-1

represents the predicted state. Additionally, the format for

subsections and symbols is standardized for consistency

throughout the paper. Here, Kk is the Kalman Gain, H is

the measurement matrix, Zk is the measurement at time k,

and R is the measured noise covariance. Kalman filter tools

for robot arms using low-cost 3D Xbox 360 cameras are

described by Berti et al and Welch [8, 9].

 In Fuzzy-Based Processing, a methodology grounded in

logic and utilizing fuzzy rules is employed to rectify

positioning inaccuracies. Typically, a human operator

leverages their binocular vision to adjust the tool and rectify

positional errors. This is commonly observed in scenarios

such as medical procedures or nuclear tool handling [10].

However, in situations like bomb disposal or archaeological

explorations, the robot must be equipped with binocular

vision. Additionally, an AI-driven set of rules is crucial for

successful operation, [11]. These rules, guided by artificial

intelligence, enable the robot to make decisions and learn

from experience, thereby enhancing the precision and

success rate of its tasks. [12, 13, 14, 15]. Many alternatives

to Kalman Filters exist, each with its strengths and

limitations depending on the specific application: The

Kalman Filter, Particle Filter, and Extended Kalman Filter

are all state estimation techniques used in various

applications. The Kalman Filter is suitable for linear models

and assumes Gaussian distributions for states. It is

computationally efficient, especially for linear systems, and

is widely used in finance, control, and navigation. The

Particle Filter, on the other hand, is suitable for nonlinear

models and can handle arbitrary distributions of states.

However, it is computationally expensive, especially for

high-dimensional systems. It is useful for tracking highly

nonlinear and non-Gaussian systems, such as in robotics

and tracking. The Extended Kalman Filter is used for mildly

nonlinear models and, like the Kalman Filter, assumes

Gaussian distributions for states. It offers improved

accuracy for mildly nonlinear systems and is commonly

used in finance, sensor fusion, and robotics. Despite their

differences, all three filters play crucial roles in state

estimation and have wide-ranging applications. However,

the choice of filter depends on the specific requirements of

the system, including the nature of the system (linear or

nonlinear), the type of noise (Gaussian or non-Gaussian),

computational resources, and the level of accuracy required.

⚫ Extended Kalman Filter (EKF): This is used for mildly

nonlinear systems. The EKF is a nonlinear version of

the Kalman Filter that linearizes about an estimate of

the current mean and covariance, [13].

https://link.springer.com/article/10.1007/s43681-023-00263-y

Journal of Robotics Research (JRR) 34

Rahul Basu, Low Cost Control of Robotic Arms

⚫ Particle Filter: This is used for highly nonlinear and

non-Gaussian systems. Particle filters represent the

posterior distribution of a state by a set of random

samples, or particles, and their weights. Unscented

Kalman Filter (UKF): The UKF addresses the

limitations of the EKF by using a deterministic

sampling technique known as the unscented

transformation to pick a minimal set of sample points

(called sigma points) around the mean.

⚫ Ensemble Kalman Filter (EnKF): The EnKF uses a

Monte Carlo approach to deal with the nonlinearity of

systems. Alpha-Beta Filter: This is a simpler form of

the Kalman Filter. Double Exponential Smoothing:

This method is used for predictive tracking of user

position and orientation. It runs approximately 135

times faster with equivalent prediction performance

and simpler implementations versus Kalman and

extended Kalman filter-based predictors. [14]. Sigma

Pointer Filters that avoid the use of Jacobian matrices

were described by ElShabi [16]. Vision sensors are a

crucial addition to robotic arms like the OWI-535,

enabling them to interact more effectively with their

environment. These sensors can provide

complementary information in sensor-equipped

robotic systems, [17]. Binocular enhancement in

estimating position is described in [18]. A review of

the use is described in [19].

 III. APPLICATION

A. VISION SENSING

 The addition of vision sensors to the OWI robot arm can

enhance its capabilities in various ways. For instance, it can

help in real-time status prediction using an external camera,

thus allowing researchers to control them flexibly. In

another application, with the Open MV camera, the robot

arm could pick up a red cube and place it in a fixed position

[20]

B. Obstacle Avoidance

 Obstacle avoidance is a critical aspect of robotic systems,

including the Taiwan OWI arm. Some algorithms used for

obstacle avoidance in robotic arms: Improved RRT

Algorithm: One method involves an improved version of

the Rapidly-exploring Random Tree (RRT)

algorithm..[21]. Improved Artificial Potential Field

Algorithm: Another approach is based on the Artificial

Potential Field (APF) algorithm., and the sensor network-

based algorithm.[22,23]. These algorithms can be adapted

and applied to the Taiwan OWI arm for effective obstacle

avoidance

C. Methodology.

 Obstacle Avoidance can be integrated into the vision

system which can normally usually only determine 2D

offsets instead of 3D positions [24]. However, it works for

targets at rest or targets moving on the conveyor belt with a

uniform speed. In the CRAVES system [17], a 3D model is

used to create large synthetic data, train a vision model in

this virtual domain, and apply it to real-world images after

domain adaptation.

D. Application to a simple example

 The output of a simple program describing an acceleration

model follows. It depicts the behaviors of the Kalman Filter

written in PYTHON. The program initializes a Kalman

filter and applies it to a series of position measurements.

The state estimate is updated after each measurement,

showing the filter's ability to predict and correct the state

based on the process and measurement models. In the result:

The green line represents the true positions, red crosses

represent the noisy measurements. The blue line represents

the Kalman filter's estimated positions.

Fig. 2. Plot of the Filter output.

a) Graphing Routine: This routine uses “matplotlib” to

plot the true positions, measurements, and Kalman filter

estimates.

 b) State Estimates: It stores the state estimates after each

measurement.

 c) True Positions: It generates true positions for

comparison, assuming a simple constant acceleration model

for simplicity.

d) Measurement Positions: It stores the measurement

positions

 The graph will help to visualize how the Kalman

filter estimates the true state over time, despite the noisy

measurements. (Numerical values are listed in the

Appendix). Merely by improving the Process and Noise

covariance, a much better output is obtained as shown:

Fig. 3 Improved Filter program output.

 The improved numerical values are shown in the

Appendix. The same experiment shown in Fig.2 is now

https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf

Journal of Robotics Research (JRR) 35

Rahul Basu, Low Cost Control of Robotic Arms

modified with AI algorithms and the results are plotted for

comparison.

Fig 4. Improvements in position vs time with AI.

 AI-based Kalman Filter: Adjusted with a simple

imitation learning component that nudges the filter's

prediction closer to an "expert" trajectory.

Fig 5. State estimate vs Measurement with AI.

 Figs 4 and 5 show the difference with AI applications,

where the program was modified to include a simple

imitation learning component.

⚫ The Kalman filter's state prediction was adjusted by a

fraction (10%) of the difference between the expert

trajectory and the current estimate.

•Output: The table above shows the state estimates

(position and velocity) after each measurement. The AI

adjustment has a noticeable impact on the state estimates,

bringing them closer to the expert trajectory.

The integration of AI with the Kalman filter can be

approached in different ways, each with distinct

advantages, challenges, and implications for the filter

performance. Let us compare the two methods: AI for

adjusting the Q and R matrices and AI-based adjustment

with imitation learning as described earlier.

a. AI for Adjusting Q and R Matrices

 Overview: Q Matrix (Process Noise Covariance): This

represents the uncertainty in the model's dynamics. A

higher value indicates that the model is less confident about

its predictions. R Matrix (Measurement Noise Covariance):

Represents the uncertainty in the observations. A higher

value indicates that the measurements are less reliable.

⚫ AI Approach: Dynamic Tuning - AI can dynamically

adjust the values in the Q and R matrices based on the

context, such as changes in the environment or system

dynamics. For example, if the system detects that the

environment is becoming more unpredictable, AI

could increase the values in the Q matrix to give less

weight to predictions. Similarly, if the sensors

degrade or are known to be unreliable in certain

conditions, AI could increase the R matrix values to

reduce the influence of noisy measurements.

⚫ Advantages: Adaptive to Conditions: The filter

becomes more adaptive to varying conditions,

particularly useful in non-stationary environments

where the noise characteristics change over time.

Improved Robustness: Dynamically adjusting Q and R

can enhance the robustness of the Kalman filter,

preventing it from being overly confident in inaccurate

predictions or noisy measurements.

⚫ Challenges: Complexity: Requires a reliable AI model

to predict the appropriate Q and R values based on

context, which can add complexity to the system.

⚫ Training Data: It may need a large amount of training

data from various conditions to effectively learn how

to adjust Q and R.

⚫ Real-time Performance: Dynamically adjusting these

matrices in real-time can be computationally

intensive, especially in systems with fast dynamics.

b. AI based Adjustment with Imitation Learning

 Overview: Imitation Learning - In this approach, the

Kalman filter is adjusted by incorporating an expert

trajectory or behavior, essentially making the filter "learn"

from past expert demonstrations.

c. AI Adjustments

⚫ Adjustment Post Prediction: After the standard

Kalman filter prediction, the state estimate is nudged

toward an expert-provided trajectory, helping the filter

to correct itself based on learned behaviors. The

adjustment can be fine-tuned by controlling the

influence of the expert trajectory on the current state

estimate.

⚫ Advantages: Leveraging Expert Knowledge: This

approach allows the filter to benefit from human or

expert knowledge, making the predictions align more

closely with the ideal or desired behavior.

⚫ Improved Accuracy: with expert guidance, the

Kalman filter may produce more accurate predictions,

particularly in complex or nonlinear environments

where the standard linear Kalman filter may struggle.

⚫ Simplicity: Conceptually straightforward to

implement, as it involves directly modifying the state

estimate based on expert data.

⚫ Challenges: Limited Flexibility: The adjustment is

based on past expert trajectories, which may not

Journal of Robotics Research (JRR) 36

Rahul Basu, Low Cost Control of Robotic Arms

account for new or unforeseen conditions that were not

present during the training phase.

d Dependence on Quality of Expert Data: The effectiveness

of this method relies heavily on the quality and

representation of the expert trajectories. If the expert data is

not comprehensive, the adjustment may not always be

beneficial.

e. Potential Over fitting: There is a risk of over fitting to

specific trajectories, reducing the filter’s generalization

capability to new scenarios.

 Comparison:

⚫ Adaptability: Q and R Tuning: More adaptable to a

wide range of conditions, as it adjusts based on a

realtime assessment of noise and process variations.

⚫ Imitation Learning: Less adaptable, as it relies on

prelearned expert trajectories, which may not cover all

possible scenarios.

⚫ Complexity: Q and R Tuning: Typically more

complex to implement due to the need for dynamic

adjustment mechanisms and real-time decision-

making.

⚫ Imitation Learning: Simpler to implement, as it

directly modifies the state estimate based on a

predefined expert model.

⚫ Robustness: Q and R Tuning: Potentially more

robust, as it can adjust for unexpected changes in

system behavior and measurement quality.

⚫ Computational Cost:

⚫ Q and R Tuning: Generally higher, as it involves

continuous real-time assessment and adjustment.

⚫ Imitation Learning: Lower, since it involves a

straightforward correction after each prediction.More

robust in scenarios well represented by the expert

trajectories but can be less robust in unforeseen

conditions.

 AI-based Tuning of Q and R Matrices is more suited for

dynamic environments where the noise characteristics and

system dynamics vary over time. It is beneficial in systems

where the adaptability to changing conditions is critical,

although it requires a more complex and computationally

demanding implementation.

 AI-based Adjustment with Imitation Learning is more

appropriate when expert knowledge is readily available, and

the system's behavior aligns well with known expert

trajectories. This approach is easier to implement and can

enhance accuracy in specific, well-understood scenarios,

but it may lack flexibility in unexpected situations. The

choice between these methods depends on specific

requirements of the system, including the nature of the

environment, the availability of expert data, and the

computational resources available.

 IV. CONCLUSION

 There is the potential of AI/ML technologies to transform

space exploration, particularly through the use of robotic

arms and Bluetooth control systems. It also highlights the

role of regions like Taiwan in driving these technological

advancements. The findings could pave the way for more

sophisticated and autonomous space missions in the future.

Such applications utilize indigenous tools and low-cost

technology readily available/capable of development and

thus contribute to self-reliance in space technology.

 In this paper, we have provided a detailed

implementation and analysis of the Kalman filter, a

powerful tool for state estimation in dynamic systems.

Through a simple example involving a constant

acceleration model, we demonstrated how the Kalman filter

integrates noisy measurements to produce accurate and

reliable state estimates. The paper covered the mathematical

foundations of the Kalman filter, step-by-step

implementation, and visualization of the results,

emphasizing its effectiveness and practical applications.

 Our implementation showed that the Kalman filter could

improve state estimates even when measurements are noisy

or uncertain. The graphing routine further illustrated how

the filter adapts to new measurements, continuously

refining the state estimates over time. This makes the

Kalman filter an invaluable asset in fields such as robotics,

navigation, and control systems where accurate state

estimation is crucial. In conclusion, the Kalman filter

remains a cornerstone of modern estimation theory, offering

robust performance in diverse applications. This paper is a

comprehensive guide for researchers and practitioners,

highlighting the filter's practical utility and providing a

foundation for further exploration and application in

advanced dynamic systems.

 REFERENCES

[1] I. A. Nesnas, L. M. Fesq, and R. A. Volpe, "Autonomy

for Space Robots: Past, Present, and Future,"Curr Robot

Rep, vol. 2, pp. 251–263, 2021.

[2] A. Shyam RB, Z. Hao, U. Montanaro, S. Dixit, A. G.

Rathinam, Y. Gao, G. Neumann, and S. Fallah,

"Autonomous Robots for Space: Trajectory Learning and

Adaptation Using Imitation,"Front. Robot. AI, vol. 8, p.

638849, 2021.

[3] [Online]. Available:

https://orionrobots.co.uk/2021/01/23/bluedot-usb-arm-

control.html

[4] X. Miao, H. Fu, and X. Song, "Research on motion

trajectory planning of the robotic arm of a robot,"Artif Life

Robotics, vol. 27, pp. 561–567, 2022.

[5] S. Chen, J. Zhang, and T. Zhang, "Fuzzy Image

Processing Based on Deep Learning: A Survey," in The

International Conference on Image, Vision and Intelligent

Systems (ICIVIS 2021), Lecture Notes in Electrical

Engineering, vol. 813, J. Yao, Y. Xiao, P. You, and G. Sun,

Eds. Springer, Singapore, 2022. [Online]. Available:

https://doi.org/10.1007/978-981-16-6963-7_10

https://orionrobots.co.uk/2021/01/23/bluedot-usb-arm-control.html
https://orionrobots.co.uk/2021/01/23/bluedot-usb-arm-control.html
https://doi.org/10.1007/978-981-16-6963-7_10

Journal of Robotics Research (JRR) 37

Rahul Basu, Low Cost Control of Robotic Arms

[6] E. Kou and A. Haggenmiller, "Extended Kalman Filter

State Estimation for Autonomous Competition Robots,"

[Online]. Available:

https://github.com/BubblyBingBong/EKF

[7] H. Wang, "Fuzzy control system for visual navigation

of autonomous mobile robot based on Kalman filter,"Int J

Syst Assur Eng Manag, vol. 14, pp. 786–795, 2023.

[Online]. Available: https://doi.org/10.1007/s13198-021-

01570-5

[8] E. Berti, A.-J. Sánchez-Salmerón, and F. Benimeli,

"Kalman Filter for Tracking Robotic Arms Using low-cost

3D Vision Systems," in ACHI 2012 - 5th International

Conference on Advances in Computer-Human Interactions,

2012.

[9] G. Welch and G. Bishop, "An Introduction to the

Kalman Filter," in SIGGRAPH, 2001.

[10] O. Gomes, "I, Robot: the three laws of robotics and the

ethics of the peopleless economy, "AI and Ethics, vol. 4,

2023. [Online]. Available: https://doi.org/10.1007/s43681-

023-00263-y

[11] R. Czabanski, M. Jezewski, and J. Leski, "Introduction

to Fuzzy Systems," in Theory and Applications of Ordered

Fuzzy Numbers, P. Prokopowicz, J. Czerniak, D.

Mikołajewski, Ł. Apiecionek, and D. Ślȩzak, Eds. Springer,

Cham, vol. 356, 2017. [Online]. Available:

https://doi.org/10.1007/978-3-319-59614-3_2

[12] X. Yu, Z. Fan, H. Wan, Y. He, J. Du, N. Li, Z. Yuan,

and G. Xiao, "Positioning, Navigation, and Book

Accessing/Returning in an Autonomous Library Robot

using Integrated Binocular Vision and QR Code

Identification Systems, "Sensors, vol. 19, p. 783, 2019.

[Online]. Available: https://doi.org/10.3390/s19040783

[13] J. J. LaViola Jr., "Double Exponential Smoothing: An

Alternative to Kalman Filter-Based Predictive Tracking," in

International Immersive Projection Technologies

Workshop Eurographics Workshop on Virtual

Environments, A. Deisinger and A. Kunz, Eds., 2003.

[14] N. Kumari, R. Kulkarni, M. R. Ahmed, and N. Kumar,

"Use of Kalman Filter and Its Variants in State Estimation:

A Review," in Artificial Intelligence for a Sustainable

Industry 4.0, S. Awasthi, C. M. Travieso-González, G.

Sanyal, and D. Kumar Singh, Eds. Springer, Cham, 2021.

[Online]. Available: https://doi.org/10.1007/978-3-030-

77070-9_13

[15] C. Suliman, C. Cruceru, and F. Moldoveanu, "Mobile

Robot Position Estimation Using the Kalman

Filter,"Scientific Bulletin of the Petru Maior University of

Tirgu Mures, vol. 6 (XXIII), pp. 75-78, 2009.

[16] M. Al-Shabi, "Sigmaa Point Filters in Robotic

Applications,"Intelligent Control and Automation, vol. 6,

no. 3, pp. 168-183, 2015. [Online]. Available:

https://doi.org/10.4236/ica.2015.63017

[17] Y. Zuo, W. Qiu, L. Xie, et al., "CRAVES: Controlling

Robotic Arm with a Vision-based Economic System,"

2018. [Online]. Available:

https://doi.org/10.48550/arXiv.1812.00725

[18] W. P. Ma, W. X. Li, and P. X. Cao, "Binocular Vision

Object Positioning Method for Robots Based on Coarse-

fine Stereo Matching,"Int. J. Autom. Comput., vol. 17, pp.

562–571, 2020. [Online]. Available:

https://doi.org/10.1007/s11633-020-1226-3

[19] N. Kumari, R. Kulkarni, A. Riyaz, and N. Kumar, "Use

of Kalman Filter and Its Variants in State Estimation: A

Review," in Artificial Intelligence for a Sustainable

Industry 4.0, S. Awasthi, C. M. Travieso-González, G.

Sanyal, and D. Kumar Singh, Eds. Springer, Cham, 2021.

[20] [Online]. Available:

https://content.instructables.com/pdfs/EIZ/17ED/JCAUIX

SV/An-Affordable-Vision-Solution-With-Robot-Arm.pdf

[21] H. Zhang, Y. Zhu, X. Liu, and X. Xu, "Analysis of

Obstacle Avoidance Strategy for Dual-Arm Robot Based on

Speed Field with Improved Artificial Potential Field

Algorithm," Electronics, vol. 10, p. 1850, 2021. [Online].

Available: https://doi.org/10.3390/electronics10151850

[22] H. Zhang, Y. Zhu, and X. Liu, "Analysis of Obstacle

Avoidance Strategy for Dual-Arm Robot Based on Speed

Field with Improved Artificial Potential Field Algorithm,"

Electronics, vol. 10, p. 1850, 2021. [Online]. Available:

https://doi.org/10.3390/electronics10151850

[23] W. Shi, K. Wang, and C. Zhao, "Control of Robotic

Arm Using Visual Feedback," Applied Sciences, vol. 12, no.

8, p. 4087, 2022. [Online]. Available:

https://doi.org/10.3390/app12084087

[24] L. Chen, H. Yang, and P. Liu, "Intelligent Robot Arm:

Vision-Based Dynamic Measurement System for Industrial

Applications," in Intelligent Robotics and Applications.

ICIRA 2019. Lecture Notes in Computer Science, vol.

11744, H. Yu, J. Liu, L. Liu, Z. Ju, Y. Liu, and D. Zhou,

Eds. Springer, Cham. [Online]. Available:

https://doi.org/10.1007/978-3-030-27541-9_11

APPENDIX:
Python sample programmes used in the paper

import numpy as np

class KalmanFilter:
 def __init__(self, A, B, H, Q, R, P, x):

 self.A = A # State transition matrix

 self.B = B # Control input matrix
 self.H = H # Observation matrix

 self.Q = Q # Process noise covariance

 self.R = R # Measurement noise covariance
 self.P = P # Estimate error covariance

 self.x = x # State estimate

 def predict(self, u):

 self.x = np.dot(self.A, self.x) + np.dot(self.B, u)

 self.P = np.dot(np.dot(self.A, self.P), self.A.T) + self.Q

 def update(self, z):

 y = z - np.dot(self.H, self.x)
 S = np.dot(self.H, np.dot(self.P, self.H.T)) + self.R

 K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))

 self.x = self.x + np.dot(K, y)
 I = np.eye(self.A.shape[0])

https://github.com/BubblyBingBong/EKF
https://doi.org/10.1007/s13198-021-01570-5
https://doi.org/10.1007/s13198-021-01570-5
https://doi.org/10.1007/s43681-023-00263-y
https://doi.org/10.1007/s43681-023-00263-y
https://doi.org/10.1007/978-3-319-59614-3_2
https://doi.org/10.3390/s19040783
https://doi.org/10.1007/978-3-030-77070-9_13
https://doi.org/10.1007/978-3-030-77070-9_13
https://doi.org/10.4236/ica.2015.63017
https://doi.org/10.48550/arXiv.1812.00725
https://doi.org/10.1007/s11633-020-1226-3
https://content.instructables.com/pdfs/EIZ/17ED/JCAUIXSV/An-Affordable-Vision-Solution-With-Robot-Arm.pdf
https://content.instructables.com/pdfs/EIZ/17ED/JCAUIXSV/An-Affordable-Vision-Solution-With-Robot-Arm.pdf
https://doi.org/10.3390/electronics10151850
https://doi.org/10.3390/electronics10151850
https://doi.org/10.3390/app12084087
https://doi.org/10.1007/978-3-030-27541-9_11

Journal of Robotics Research (JRR) 38

Rahul Basu, Low Cost Control of Robotic Arms

 self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), (I - np.dot(K,
self.H)).T) + np.dot(np.dot(K, self.R), K.T)

Sample input data
A = np.array([[1, 1], [0, 1]]) # State transition matrix

B = np.array([[0.5], [1]]) # Control input matrix

H = np.array([[1, 0]]) # Observation matrix
Q = np.array([[1, 0], [0, 1]]) # Process noise covariance

R = np.array([[1]]) # Measurement noise covariance

P = np.array([[1, 0], [0, 1]]) # Estimate error covariance
x = np.array([[0], [0]]) # Initial state estimate

kf = KalmanFilter(A, B, H, Q, R, P, x)

Control input (acceleration)

u = np.array([[2]])

Measurements (positions)

measurements = [1, 2, 3, 4, 5]

print("Initial state:")

print(kf.x)

Apply Kalman filter

for i, z in enumerate(measurements):
 kf.predict(u)

 kf.update(np.array([[z]]))
 print(f"State estimate after measurement {i + 1}:")

 print(kf.x)

(Note: graphing routine is excluded).

Numerical Output plotted in Graph (Fig 1)

Initial state:

[[0]
 [0]]

State estimate after measurement 1:

[[0.66666667]
 [1.33333333]]

State estimate after measurement 2:

[[1.38461538]
 [2.30769231]]

State estimate after measurement 3:

[[2.1875]
 [3.125]]

State estimate after measurement 4:

[[3.05769231]
 [3.84615385]]

State estimate after measurement 5:

[[3.98947368]
 [4.47368421]]

Improved Output by changing the Process and Measurement parameters

Improved program output values shown in Fig 3.

Initial state:
[[0]

 [0]]

State estimate after measurement 1:
[[1.40324336]

 [2.19202065]]

State estimate after measurement 2:
[[3.54420805]

 [3.59717843]]

State estimate after measurement 3:
[[7.76997829]

 [5.41945123]]

State estimate after measurement 4:
[[14.58928194]

 [7.5901407]]

State estimate after measurement 5:
[[23.78819821]

 [9.83858194]]

State estimate after measurement 6:
[[34.98912776]

 [11.98497255]]

State estimate after measurement 7:
[[48.43584699]

 [14.17152398]]

State estimate after measurement 8:
[[66.02953171]

 [17.15108984]]

State estimate after measurement 9:
[[84.03436105]

 [19.09191595]]

State estimate after measurement 10:
[[103.58900587]

 [20.87453872]]

Table1. Sample outputs

Measurement
Position

Estimate

Velocity

Estimate

1 1.05 1.85

2 2.362 2.841

3 3.519 3.236

4 4.583 3.425

5 5.607 3.544

SUBROUTINE FOR ADDING AI to the CODE:

import numpy as np

class KalmanFilter:

 def __init__(self, A, B, H, Q, R, P, x):
 self.A = A # State transition matrix

 self.B = B # Control input matrix

 self.H = H # Observation matrix
 self.Q = Q # Process noise covariance

 self.R = R # Measurement noise covariance

 self.P = P # Estimate error covariance
 self.x = x # State estimate

 def predict(self, u):
 self.x = np.dot(self.A, self.x) + np.dot(self.B, u)

 self.P = np.dot(np.dot(self.A, self.P), self.A.T) + self.Q

 def update(self, z):

 y = z - np.dot(self.H, self.x)

 S = np.dot(self.H, np.dot(self.P, self.H.T)) + self.R
 K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))

 self.x = self.x + np.dot(K, y)

 I = np.eye(self.A.shape[0])
 self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), (I - np.dot(K,

self.H)).T) + np.dot(np.dot(K, self.R), K.T)

class AIBasedKalmanFilter(KalmanFilter):

 def __init__(self, A, B, H, Q, R, P, x, expert_trajectory):

 super().__init__(A, B, H, Q, R, P, x)
 self.expert_trajectory = expert_trajectory

 def predict(self, u):
 super().predict(u)

 # AI-based adjustment to move the prediction closer to an expert

trajectory
 self.x += 0.1 * (self.expert_trajectory - self.x)

Usage Example
Define the system and filter parameters as per the model

A = np.array([[1, 1], [0, 1]]) # State transition matrix

B = np.array([[0.5], [1]]) # Control input matrix
H = np.array([[1, 0]]) # Observation matrix

Q = np.array([[1, 0], [0, 1]]) # Process noise covariance

R = np.array([[1]]) # Measurement noise covariance
P = np.array([[1, 0], [0, 1]]) # Estimate error covariance

x = np.array([[0], [0]]) # Initial state estimate

Expert trajectory (this should be based on actual expert data or desired

trajectory)

Journal of Robotics Research (JRR) 39

Rahul Basu, Low Cost Control of Robotic Arms

expert_trajectory = np.array([[3], [1]])

Initialize the AI-based Kalman filter

ai_kf = AIBasedKalmanFilter(A, B, H, Q, R, P, x, expert_trajectory)

Control input (e.g., acceleration)

u = np.array([[2]])

Simulate with some measurements

measurements = [1, 2, 3, 4, 5]

Run the AI-based Kalman filter

for i, z in enumerate(measurements):
 ai_kf.predict(u)

 ai_kf.update(np.array([[z]]))

 print(f"State estimate after measurement {i + 1}: {ai_kf.x.flatten()}")

1) Explanation:

• KalmanFilter Class: The base Kalman Filter implementation.

• AIBasedKalmanFilter Class: This class extends the

KalmanFilter class and adds a simple imitation learning
mechanism.

o In the predict method, after the usual state

prediction, an adjustment is made to move the

predicted state closer to an "expert trajectory"
(which could be an ideal path learned from

previous expert demonstrations).

o The adjustment factor (0.1 in this example) can be
tuned based on how aggressively you want the
filter to correct its predictions.

AIBasedKalmanFilter instead of KalmanFilter is used for this AI-
enhanced version in the application.

The expert_trajectory is replaced with the desired or learned trajectory

based on expert data.

