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Abstract—This paper presents the practical implementation of a 

Kalman filter algorithm for state estimation on the Taiwan OWI 

robotic arm. The study highlights the integration of low-cost tools 

such as Arduino, HC-05 Bluetooth Module, and L298N Motor 

Driver Module in controlling the robotic arm. Key contributions 

include a novel approach to trajectory planning and path correction 

using imitation learning. The paper provides detailed 

methodologies for trajectory calculation, the role of the Extended 

Kalman Filter (EKF) in state estimation, and the application of AI 

techniques to enhance robotic arm autonomy. The results 

demonstrate the feasibility and effectiveness of the proposed 

methods, paving the way for more sophisticated robotic 

applications. 
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    I. INTRODUCTION  

    The advent of Artificial Intelligence (AI) and Machine 

Learning (ML) technologies has revolutionized various 

sectors, including space exploration. This paper focuses on 

these technologies in controlling robotic arms for space and 

other missions. Robotic arms have become an integral part 

of space missions, aiding in tasks ranging from sample 

collection to spacecraft repair.  Integration of AI/ML 

technologies has further enhanced their capabilities, 

enabling autonomous functions and system-level 

capabilities. This paper discusses the application of 

programming by demonstration or imitation learning for 

trajectory planning of manipulators on free-floating 

spacecraft. The control of these robotic arms has been made 

more accessible and efficient through  Bluetooth 

technology. 

 

  Recent advances by experimenters include the design and 

development of a Bluetooth Controlled Robot using 

Arduino, HC-05 Bluetooth Module, and L298N Motor 

Driver Module. The use of Arduino, HC-05 Bluetooth 

Module, and L298N Motor Driver Module represents an 

advanced yet cost-effective approach to robotic arm control. 

These components enable precise and reliable control over 

the Taiwan OWI robotic arm, making it suitable for both 

educational and research purposes. It also explores the use 

of a dedicated Android app for controlling the robotic arm. 

The incorporation of AI using algorithms like the cost of 

trajectory and weightage, vision sensors, Kalman filters, 

and other aids has yet to be developed as a project for this 

low-cost application. The ultimate goal is to lead to full 

autonomy for such devices, [1, 2].  'Full autonomy,' refers 

to the robotic arm's ability  

to perform tasks without human intervention. This includes 

autonomous path planning, obstacle avoidance, and 

decision-making based on real-time data from sensors. 

   The Taiwan OWI robotic arm is a low-cost device 

controlled using Bluetooth technology. An  Arduino Mega 

can control the OWI robot arm kit through a phone.  This 

involves adding the user to the Bluetooth group for access 

and installing the necessary dependencies. [3].These 

methods highlight the flexibility and versatility of 

Bluetooth technology in controlling robotic arms like the 

Taiwan OWI.  

 The unique aspects of the paper lie in the use of simple low-

cost tools to utilize advanced technological concepts. 

 

A.   OBJECTIVE 

    The objective of this paper is to present a practical 

implementation of the Kalman filter algorithm for state 

estimation in dynamic systems. By illustrating the process 

through a step-by-step example using a simple constant 

acceleration model, the paper aims to demonstrate how the 

Kalman filter can effectively integrate noisy measurements 

to produce accurate state estimates. This includes a detailed 

explanation of the mathematical foundations, the 

algorithm's application, and the visualization of results 

through graphing routines. The ultimate goal is to provide a 

clear and comprehensive guide to serve as a reference for 

researchers and practitioners in fields such as robotics, 

navigation, and control systems.  

  In this study, AI is applied through imitation learning and 

regression for path planning, where the robotic arm learns 

from expert demonstrations. The learning algorithm enables 

the arm to adapt to new trajectories with minimal human 

intervention. This AI-driven approach significantly 

enhances the efficiency of the trajectory planning process 

and contributes to the robotic arm's autonomy 

 

    II. DISCUSSION 

  In the realm of space exploration, the autonomy of robots 

is a critical area of focus. This study introduces a novel 

approach to trajectory planning for manipulators on 

spacecraft, utilizing programming by demonstration or 

imitation learning. The trajectory planning method 

leverages programming by demonstration or imitation 

learning. This method minimizes attitudinal changes during 

the robotic arm's operation, reducing the load on the 

Attitude Determination and Control System (ADCS). The 

paper details the algorithmic approach usage and its 

implementation, demonstrating how it optimizes the robotic 

arm's movements. A sophisticated 7-DoF robotic arm, 

attached to a compact spacecraft, is used for various tasks 
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such as debris removal, on-orbit servicing, assembly, and 

autonomous docking [2]. The movement of the robotic arm 

influences the spacecraft’s attitude, necessitating corrective 

actions from the Attitude Determination and Control 

System (ADCS). The proposed method identifies the 

optimal trajectory that minimizes these changes, thereby 

reducing the ADCS load. Power consumption, a crucial 

factor in spacecraft trajectory planning and control, is 

addressed by conducting trajectory learning offline. This 

process involves gathering data from demonstrations and 

encoding it into a probabilistic distribution of trajectories. 

This distribution can then be used in planning in new 

situations, requiring minimal power for computations after 

deployment. The study also introduces a cost term to 

identify the optimal trajectory that minimizes attitudinal 

changes. This comprehensive approach to trajectory 

planning could pave the way for more efficient and 

autonomous space missions in the future.  

 

Fig. 1. Taiwan OWI Robot configuration. 

  The paper gives special attention to the Taiwan OWI, a 

significant player in  Robotics. Despite the political 

complexities surrounding Taiwan, it continues to make 

strides in technological advancements. The paper aims to 

shed light on how these advancements can contribute to the 

broader field of space exploration. 

  A detailed explanation of the imitation learning 

algorithm is provided in Section X. The algorithm can be 

trained using a dataset obtained from expert 

demonstrations, which includes various scenarios 

encountered during the robotic arm's operation. The training 

process encodes these demonstrations into a probabilistic 

model. 

A  Novel Approach to Trajectory Planning 

   This study introduces a novel approach to trajectory 

planning by leveraging the Extended Kalman Filter (EKF) 

in combination with particle swarm optimization (PSO). 

The EKF is used for real-time state estimation, providing 

accurate predictions of the robotic arm's position and 

velocity. Simultaneously, PSO is applied to optimize the 

trajectory, minimizing the energy consumption and 

computational load. This dual approach not only ensures 

precise movement but also enhances the overall efficiency 

of the robotic arm, making it suitable for applications that 

require high levels of accuracy and reliability. 

B. Trajectory Calculation  

  Calculation involves moving a robotic arm from an initial 

to a set position by changing the joint angle. This is crucial 

in modern applications like bin-picking, which aims to pick 

randomly placed objects. The process uses modified 

trajectory metrics to compute collision-free trajectories.  

PSO (Particle Swarm Optimization) is described for 

trajectory planning by [4]. Vision-based trajectory planning 

is described by [5]. The trajectory calculation section is 

expanded to include a detailed description of the methods 

used to compute collision-free paths. Specifically, the 

Particle Swarm Optimization (PSO) method is discussed, 

along with its implementation details. Additionally, the use 

of the Extended Kalman Filter (EKF) as the sole method for 

the predictor-corrector algorithm is explained, including its 

limitations and how it enhances the system's accuracy 

 

C. Predictor-Corrector Algorithms: 

  Kalman Filter Tools are powerful algorithms for 

estimating and predicting system states in uncertain 

conditions,  in applications like target tracking, navigation, 

and control. In robotic arms, they estimate the system state 

(e.g., arm position and velocity) based on observed 

measurements over time. The filter combines the predicted 

system state and the latest measurement in a weighted 

average, producing more precise estimates.  They are 

widely used in  Robotics, particularly for autonomous 

robots and robot arms, for state estimation [6, 7].  State 

estimation is the problem of accurately determining 

variables about the robot, such as its position concerning 

some global frame, velocity, acceleration, IMU biases, and 

other dynamical variables, given the robot’s sensors and 

physics kinematics. The standard Kalman Filter works well 

for linear systems [7]. However, many systems in robotics 

are nonlinear [6]. To handle these nonlinear systems, the 

Extended  Kalman Filter (EKF) is often used. The EKF is a 

nonlinear full-state estimator that approximates the state 

estimate with the lowest covariance error when given the 

sensor measurements, the model prediction, and their 

variances [6].  

  For instance, in autonomous mobile robot competitions, 

accurate localization is crucial for creating an autonomous 

competition robot. Two common localization methods are 

odometry and computer vision landmark detection. 

Odometry provides frequent velocity measurements, while 

landmark detection provides infrequent position 

measurements. The state can also be predicted with a 

physics model. These three types of localization can be 

“fused” to create a more accurate state estimate using an 

Extended Kalman Filter (EKF).  

D. Imitation Learning and Expert Experiments 

  The robotic arm was trained using imitation learning, 

where expert demonstrations were utilized to teach the 

system the desired paths and movements. These 

demonstrations were encoded into a probabilistic 

distribution, allowing the arm to generalize and adapt to 

new situations. The expert experiments involved a series of 

predefined tasks, such as object manipulation and obstacle 

avoidance, which were recorded and used as training data. 
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The resulting model enables the robotic arm to perform 

these tasks accurately, even in dynamic environments. 

 

E.Technological Advancements in Robotic Arm Design 

  The development of the Taiwan OWI robotic arm 

incorporates several technological advancements aimed at 

enhancing its functionality and ease of use. Key 

components such as the Arduino Mega, HC-05 Bluetooth 

Module, and L298N Motor Driver Module were selected 

for their affordability and versatility. These components 

enable wireless control of the robotic arm, simplifying the 

user interface and expanding its application in various 

environments. The integration of these technologies 

demonstrates how low-cost tools can be effectively utilized 

to create advanced robotic systems capable of autonomous 

operation. 

  In recent years, there have been significant advancements 

in  Robotics, such as Boston Dynamics' Spot, Da Vinci 

surgical robot, Tesla's Autopilot, and more. These 

advancements have further highlighted the importance of 

state estimation and the role of Kalman Filters.  Kalman 

Filters and EKFs have limitations and assumptions to be 

considered when implementing them in real-world 

applications. For example, velocity error will accumulate in 

position when using odometry. Therefore,  understanding 

these limitations and assumptions effectively using these 

tools in robotics is important.  The Kalman Filter is based 

on mathematical formulas that iteratively update estimates 

primarily based on new measurements. The following is a 

simplified rationalization of the fundamental equations 

within the Kalman Filter: 

a.  Prediction Step 

State Prediction:   

   (1) 

Covariance Prediction:   

  (2) 

  Here,  is the predicted state at time ( k ), 

 is the estimated state at time ( k-1 ), ( F ) is the 

state transition matrix, ( B ) is the control input matrix, ( uk-

1 ) is the control input at time ( k-1 ),  is the predicted 

state covariance, and ( Q ) is the process noise covariance. 

b. Update Step: 

Kalman Gain:   

  (3) 

State Update:   

  (4) 

Covariance Update:   

   (5) 

  The notation used in the equations is clarified to 

distinguish between current and predicted states. For 

instance, x^k represents the current state, while x^k/k-1 

represents the predicted state. Additionally, the format for 

subsections and symbols is standardized for consistency 

throughout the paper. Here, Kk is the Kalman Gain, H is 

the measurement matrix, Zk is the measurement at time k, 

and R is the measured noise covariance. Kalman filter tools 

for robot arms using low-cost 3D Xbox 360 cameras are 

described by Berti et al and Welch [8, 9]. 

 In Fuzzy-Based Processing, a methodology grounded in 

logic and utilizing fuzzy rules is employed to rectify 

positioning inaccuracies. Typically, a human operator 

leverages their binocular vision to adjust the tool and rectify 

positional errors. This is commonly observed in scenarios 

such as medical procedures or nuclear tool handling [10]. 

However, in situations like bomb disposal or archaeological 

explorations, the robot must be equipped with binocular 

vision. Additionally, an AI-driven set of rules is crucial for 

successful operation,  [11]. These rules, guided by artificial 

intelligence, enable the robot to make decisions and learn 

from experience, thereby enhancing the precision and 

success rate of its tasks. [12, 13, 14, 15]. Many alternatives 

to Kalman Filters exist, each with its strengths and 

limitations depending on the specific application: The 

Kalman Filter, Particle Filter, and Extended Kalman Filter 

are all state estimation techniques used in various 

applications. The Kalman Filter is suitable for linear models 

and assumes Gaussian distributions for states. It is 

computationally efficient, especially for linear systems, and 

is widely used in finance, control, and navigation. The 

Particle Filter, on the other hand, is suitable for nonlinear 

models and can handle arbitrary distributions of states. 

However, it is computationally expensive, especially for 

high-dimensional systems. It is useful for tracking highly 

nonlinear and non-Gaussian systems, such as in robotics 

and tracking. The Extended Kalman Filter is used for mildly 

nonlinear models and, like the Kalman Filter, assumes 

Gaussian distributions for states. It offers improved 

accuracy for mildly nonlinear systems and is commonly 

used in finance, sensor fusion, and robotics. Despite their 

differences, all three filters play crucial roles in state 

estimation and have wide-ranging applications. However, 

the choice of filter depends on the specific requirements of 

the system, including the nature of the system (linear or 

nonlinear), the type of noise (Gaussian or non-Gaussian), 

computational resources, and the level of accuracy required. 

⚫ Extended Kalman Filter (EKF): This is used for mildly 

nonlinear systems. The EKF is a nonlinear version of 

the Kalman Filter that linearizes about an estimate of 

the current mean and covariance, [13]. 

https://link.springer.com/article/10.1007/s43681-023-00263-y
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⚫ Particle Filter: This is used for highly nonlinear and 

non-Gaussian systems. Particle filters represent the 

posterior distribution of a state by a set of random 

samples, or particles, and their weights. Unscented 

Kalman Filter (UKF): The UKF addresses the 

limitations of the EKF by using a deterministic 

sampling technique known as the unscented 

transformation to pick a minimal set of sample points 

(called sigma points) around the mean. 

⚫  Ensemble Kalman Filter (EnKF): The EnKF uses a 

Monte Carlo approach to deal with the nonlinearity of 

systems. Alpha-Beta Filter: This is a simpler form of 

the Kalman Filter. Double Exponential Smoothing: 

This method is used for predictive tracking of user 

position and orientation. It runs approximately 135 

times faster with equivalent prediction performance 

and simpler implementations versus Kalman and 

extended Kalman filter-based predictors. [14]. Sigma 

Pointer Filters that avoid the use of Jacobian matrices 

were described by ElShabi [16]. Vision sensors are a 

crucial addition to robotic arms like the OWI-535, 

enabling them to interact more effectively with their 

environment. These sensors can provide 

complementary information in sensor-equipped 

robotic systems, [17]. Binocular enhancement in 

estimating position is described in [18]. A review of 

the use is described in [19]. 

 

               III.   APPLICATION 

A.  VISION SENSING 

  The addition of vision sensors to the OWI robot arm can 

enhance its capabilities in various ways. For instance, it can 

help in real-time status prediction using an external camera, 

thus allowing researchers to control them flexibly. In 

another application, with the Open MV camera, the robot 

arm could pick up a red cube and place it in a fixed position 

[20] 

B. Obstacle Avoidance 

  Obstacle avoidance is a critical aspect of robotic systems, 

including the Taiwan OWI arm. Some algorithms used for 

obstacle avoidance in robotic arms: Improved RRT 

Algorithm: One method involves an improved version of 

the Rapidly-exploring Random Tree (RRT) 

algorithm..[21]. Improved Artificial Potential Field 

Algorithm: Another approach is based on the Artificial 

Potential Field (APF) algorithm.,  and the sensor network-

based algorithm.[22,23]. These algorithms can be adapted 

and applied to the Taiwan OWI arm for effective obstacle 

avoidance 

 

C. Methodology. 

  Obstacle Avoidance can be integrated into the vision 

system which can normally usually only determine 2D 

offsets instead of 3D positions [24]. However, it works for 

targets at rest or targets moving on the conveyor belt with a 

uniform speed. In the CRAVES system [17], a 3D model is 

used to create large synthetic data, train a vision model in 

this virtual domain, and apply it to real-world images after 

domain adaptation. 

 

D. Application to a simple example 

  The output of a simple program describing an acceleration 

model follows. It depicts the behaviors of the Kalman Filter 

written in PYTHON. The program initializes a Kalman 

filter and applies it to a series of position measurements. 

The state estimate is updated after each measurement, 

showing the filter's ability to predict and correct the state 

based on the process and measurement models. In the result: 

The green line represents the true positions,  red crosses 

represent the noisy measurements. The blue line represents 

the Kalman filter's estimated positions. 

 
 

Fig. 2. Plot of the Filter output. 

 

a)  Graphing Routine: This routine uses “matplotlib” to 

plot the true positions, measurements, and Kalman filter 

estimates. 

 b)  State Estimates: It stores the state estimates after each 

measurement. 

 c)  True Positions: It generates true positions for 

comparison, assuming a simple constant acceleration model 

for simplicity.  

d)  Measurement Positions: It stores the measurement 

positions 

 

  The graph will help to visualize how the Kalman 

filter estimates the true state over time, despite the noisy 

measurements. (Numerical values are listed in the 

Appendix).  Merely by improving the Process and  Noise 

covariance, a much better output is obtained as shown: 

 

 
 

Fig. 3 Improved Filter program output. 

  

  The improved numerical values are shown in the 

Appendix. The same experiment shown in Fig.2 is now 

https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
https://arxiv.org/pdf/1812.00725.pdf
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modified with AI algorithms and the results are plotted for 

comparison. 

 

 

 
 

Fig 4. Improvements in position vs time with AI. 

 

 

  AI-based Kalman Filter: Adjusted with a simple 

imitation learning component that nudges the filter's 

prediction closer to an "expert" trajectory. 

 

 

 
Fig 5. State estimate vs Measurement with AI. 

 Figs 4 and 5 show the difference with AI applications, 

where the program was modified to include a simple 

imitation learning component.  

⚫ The Kalman filter's state prediction was adjusted by a 

fraction (10%) of the difference between the expert 

trajectory and the current estimate. 

•Output: The table above shows the state estimates 

(position and velocity) after each measurement. The AI 

adjustment has a noticeable impact on the state estimates, 

bringing them closer to the expert trajectory. 

The integration of AI with the Kalman filter can be 

approached in different ways, each with distinct 

advantages, challenges, and implications for  the filter 

performance. Let us compare the two methods: AI for 

adjusting the Q and R matrices and AI-based adjustment 

with imitation learning as described earlier. 

a. AI for Adjusting Q and R Matrices 

  Overview: Q Matrix (Process Noise Covariance): This 

represents the uncertainty in the model's dynamics. A 

higher value indicates that the model is less confident about 

its predictions. R Matrix (Measurement Noise Covariance): 

Represents the uncertainty in the observations. A higher 

value indicates that the measurements are less reliable. 

⚫ AI Approach: Dynamic Tuning - AI can dynamically 

adjust the values in the Q and R matrices based on the 

context, such as changes in the environment or system 

dynamics.   For example, if the system detects that the 

environment is becoming more unpredictable, AI 

could increase the values in the Q matrix to give less 

weight to predictions.   Similarly, if the sensors 

degrade or are known to be unreliable in certain 

conditions, AI could increase the R matrix values to 

reduce the influence of noisy measurements. 

⚫ Advantages: Adaptive to Conditions: The filter 

becomes more adaptive to varying conditions, 

particularly useful in non-stationary environments 

where the noise characteristics change over time. 

Improved Robustness: Dynamically adjusting Q and R 

can enhance the robustness of the Kalman filter, 

preventing it from being overly confident in inaccurate 

predictions or noisy measurements. 

⚫ Challenges: Complexity: Requires a reliable AI model 

to predict the appropriate Q and R values based on 

context, which can add complexity to the system. 

⚫ Training Data: It may need a large amount of training 

data from various conditions to effectively learn how 

to adjust Q and R. 

⚫ Real-time Performance: Dynamically adjusting these 

matrices in real-time can be computationally 

intensive, especially in systems with fast dynamics. 

b. AI based Adjustment with Imitation Learning 

   Overview: Imitation Learning -  In this approach, the 

Kalman filter is adjusted by incorporating an expert 

trajectory or behavior, essentially making the filter "learn" 

from past expert demonstrations. 

 

c. AI Adjustments 

 

⚫ Adjustment Post Prediction: After the standard 

Kalman filter prediction, the state estimate is nudged 

toward an expert-provided trajectory, helping the filter 

to correct itself based on learned behaviors.   The 

adjustment can be fine-tuned by controlling the 

influence of the expert trajectory on the current state 

estimate. 

⚫ Advantages: Leveraging Expert Knowledge: This 

approach allows the filter to benefit from human or 

expert knowledge, making the predictions align more 

closely with the ideal or desired behavior. 

⚫ Improved Accuracy: with  expert guidance, the 

Kalman filter may produce more accurate predictions, 

particularly in complex or nonlinear environments 

where the standard linear Kalman filter may struggle. 

⚫ Simplicity: Conceptually straightforward to 

implement, as it involves directly modifying the state 

estimate based on expert data. 

⚫ Challenges: Limited Flexibility: The adjustment is 

based on past expert trajectories, which may not 
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account for new or unforeseen conditions that were not 

present during the training phase. 

d Dependence on Quality of Expert Data: The effectiveness 

of this method relies heavily on the quality and 

representation of the expert trajectories. If the expert data is 

not comprehensive, the adjustment may not always be 

beneficial. 

e. Potential Over fitting: There is a risk of over fitting to 

specific trajectories, reducing the filter’s generalization 

capability to new scenarios. 

 Comparison: 

⚫  Adaptability:    Q and R Tuning: More adaptable to a 

wide range of conditions, as it adjusts based on a 

realtime assessment of noise and process variations. 

⚫ Imitation Learning: Less adaptable, as it relies on 

prelearned expert trajectories, which may not cover all 

possible scenarios. 

⚫  Complexity:    Q and R Tuning: Typically more 

complex to implement due to the need for dynamic 

adjustment mechanisms and real-time decision-

making. 

⚫ Imitation Learning: Simpler to implement, as it 

directly modifies the state estimate based on a 

predefined expert model. 

⚫ Robustness:    Q and R Tuning: Potentially more 

robust, as it can adjust for unexpected changes in 

system behavior and measurement quality. 

⚫ Computational Cost: 

⚫ Q and R Tuning: Generally higher, as it involves 

continuous real-time assessment and adjustment. 

⚫ Imitation Learning: Lower, since it involves a 

straightforward correction after each prediction.More 

robust in scenarios well represented by the expert 

trajectories but can be less robust in unforeseen 

conditions. 

  AI-based Tuning of Q and R Matrices is more suited for 

dynamic environments where the noise characteristics and 

system dynamics vary over time. It is beneficial in systems 

where the adaptability to changing conditions is critical, 

although it requires a more complex and computationally 

demanding implementation. 

   AI-based Adjustment with Imitation Learning is more 

appropriate when expert knowledge is readily available, and 

the system's behavior aligns well with known expert 

trajectories. This approach is easier to implement and can 

enhance accuracy in specific, well-understood scenarios, 

but it may lack flexibility in unexpected situations. The 

choice between these methods depends on specific 

requirements of the system, including the nature of the 

environment, the availability of expert data, and the 

computational resources available. 

  IV. CONCLUSION 

  There is the potential of AI/ML technologies to transform 

space exploration, particularly through the use of robotic 

arms and Bluetooth control systems. It also highlights the 

role of regions like Taiwan in driving these technological 

advancements. The findings could pave the way for more 

sophisticated and autonomous space missions in the future. 

Such applications utilize indigenous tools and low-cost 

technology readily available/capable of development and 

thus contribute to self-reliance in space technology. 

  In this paper, we have provided a detailed 

implementation and analysis of the Kalman filter, a 

powerful tool for state estimation in dynamic systems. 

Through a simple example involving a constant 

acceleration model, we demonstrated how the Kalman filter 

integrates noisy measurements to produce accurate and 

reliable state estimates. The paper covered the mathematical 

foundations of the Kalman filter, step-by-step 

implementation, and visualization of the results, 

emphasizing its effectiveness and practical applications. 

  Our implementation showed that the Kalman filter could 

improve state estimates even when measurements are noisy 

or uncertain. The graphing routine further illustrated how 

the filter adapts to new measurements, continuously 

refining the state estimates over time. This makes the 

Kalman filter an invaluable asset in fields such as robotics, 

navigation, and control systems where accurate state 

estimation is crucial.  In conclusion, the Kalman filter 

remains a cornerstone of modern estimation theory, offering 

robust performance in diverse applications. This paper is a 

comprehensive guide for researchers and practitioners, 

highlighting the filter's practical utility and providing a 

foundation for further exploration and application in 

advanced dynamic systems. 
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APPENDIX: 
Python sample programmes used in the paper 

 
import numpy as np 

 

class KalmanFilter: 
    def __init__(self, A, B, H, Q, R, P, x): 

        self.A = A  # State transition matrix 

        self.B = B  # Control input matrix 
        self.H = H  # Observation matrix 

        self.Q = Q  # Process noise covariance 

        self.R = R  # Measurement noise covariance 
        self.P = P  # Estimate error covariance 

        self.x = x  # State estimate 

 
    def predict(self, u): 

        self.x = np.dot(self.A, self.x) + np.dot(self.B, u) 

        self.P = np.dot(np.dot(self.A, self.P), self.A.T) + self.Q 
 

    def update(self, z): 

        y = z - np.dot(self.H, self.x) 
        S = np.dot(self.H, np.dot(self.P, self.H.T)) + self.R 

        K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S)) 

        self.x = self.x + np.dot(K, y) 
        I = np.eye(self.A.shape[0]) 
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        self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), (I - np.dot(K, 
self.H)).T) + np.dot(np.dot(K, self.R), K.T) 

 

# Sample input data 
A = np.array([[1, 1], [0, 1]])  # State transition matrix 

B = np.array([[0.5], [1]])      # Control input matrix 

H = np.array([[1, 0]])          # Observation matrix 
Q = np.array([[1, 0], [0, 1]])  # Process noise covariance 

R = np.array([[1]])             # Measurement noise covariance 

P = np.array([[1, 0], [0, 1]])  # Estimate error covariance 
x = np.array([[0], [0]])        # Initial state estimate 

 

kf = KalmanFilter(A, B, H, Q, R, P, x) 
 

# Control input (acceleration) 

u = np.array([[2]]) 
 

# Measurements (positions) 

measurements = [1, 2, 3, 4, 5] 
 

print("Initial state:") 

print(kf.x) 
 

# Apply Kalman filter 

for i, z in enumerate(measurements): 
    kf.predict(u) 

    kf.update(np.array([[z]])) 
    print(f"State estimate after measurement {i + 1}:") 

    print(kf.x) 

 
 

(Note: graphing routine is excluded).  

Numerical Output plotted in Graph (Fig 1) 
 

Initial state: 

[[0] 
 [0]] 

State estimate after measurement 1: 

[[0.66666667] 
 [1.33333333]] 

State estimate after measurement 2: 

[[1.38461538] 
 [2.30769231]] 

State estimate after measurement 3: 

[[2.1875] 
 [3.125]] 

State estimate after measurement 4: 

[[3.05769231] 
 [3.84615385]] 

State estimate after measurement 5: 

[[3.98947368] 
 [4.47368421]] 

 

 
Improved Output by changing the Process and Measurement parameters 

Improved program output values shown in Fig 3. 

Initial state: 
[[0] 

 [0]] 

State estimate after measurement 1: 
[[1.40324336] 

 [2.19202065]] 

State estimate after measurement 2: 
[[3.54420805] 

 [3.59717843]] 

State estimate after measurement 3: 
[[7.76997829] 

 [5.41945123]] 

State estimate after measurement 4: 
[[14.58928194] 

 [ 7.5901407 ]] 

State estimate after measurement 5: 
[[23.78819821] 

 [ 9.83858194]] 

State estimate after measurement 6: 
[[34.98912776] 

 [11.98497255]] 

State estimate after measurement 7: 
[[48.43584699] 

 [14.17152398]] 

State estimate after measurement 8: 
[[66.02953171] 

 [17.15108984]] 

State estimate after measurement 9: 
[[84.03436105] 

 [19.09191595]] 

State estimate after measurement 10: 
[[103.58900587] 

 [ 20.87453872]] 

 
Table1. Sample outputs 

 

Measurement 
Position 

Estimate 

Velocity 

Estimate 

1 1.05 1.85 

2 2.362 2.841 

3 3.519 3.236 

4 4.583 3.425 

5 5.607 3.544 

 

 

 

 

SUBROUTINE FOR ADDING AI to the CODE: 

 

import numpy as np 

 
class KalmanFilter: 

    def __init__(self, A, B, H, Q, R, P, x): 
        self.A = A  # State transition matrix 

        self.B = B  # Control input matrix 

        self.H = H  # Observation matrix 
        self.Q = Q  # Process noise covariance 

        self.R = R  # Measurement noise covariance 

        self.P = P  # Estimate error covariance 
        self.x = x  # State estimate 

 

    def predict(self, u): 
        self.x = np.dot(self.A, self.x) + np.dot(self.B, u) 

        self.P = np.dot(np.dot(self.A, self.P), self.A.T) + self.Q 

 
    def update(self, z): 

        y = z - np.dot(self.H, self.x) 

        S = np.dot(self.H, np.dot(self.P, self.H.T)) + self.R 
        K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S)) 

        self.x = self.x + np.dot(K, y) 

        I = np.eye(self.A.shape[0]) 
        self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), (I - np.dot(K, 

self.H)).T) + np.dot(np.dot(K, self.R), K.T) 

 
class AIBasedKalmanFilter(KalmanFilter): 

    def __init__(self, A, B, H, Q, R, P, x, expert_trajectory): 

        super().__init__(A, B, H, Q, R, P, x) 
        self.expert_trajectory = expert_trajectory 

 

    def predict(self, u): 
        super().predict(u) 

        # AI-based adjustment to move the prediction closer to an expert 

trajectory 
        self.x += 0.1 * (self.expert_trajectory - self.x) 

 

# Usage Example 
# Define the system and filter parameters as per the model 

A = np.array([[1, 1], [0, 1]])  # State transition matrix 

B = np.array([[0.5], [1]])      # Control input matrix 
H = np.array([[1, 0]])          # Observation matrix 

Q = np.array([[1, 0], [0, 1]])  # Process noise covariance 

R = np.array([[1]])             # Measurement noise covariance 
P = np.array([[1, 0], [0, 1]])  # Estimate error covariance 

x = np.array([[0], [0]])        # Initial state estimate 

 
# Expert trajectory (this should be based on actual expert data or desired 

trajectory) 
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expert_trajectory = np.array([[3], [1]]) 
 

# Initialize the AI-based Kalman filter 

ai_kf = AIBasedKalmanFilter(A, B, H, Q, R, P, x, expert_trajectory) 
 

# Control input (e.g., acceleration) 

u = np.array([[2]]) 
 

# Simulate with some measurements 

measurements = [1, 2, 3, 4, 5] 
 

# Run the AI-based Kalman filter 

for i, z in enumerate(measurements): 
    ai_kf.predict(u) 

    ai_kf.update(np.array([[z]])) 

    print(f"State estimate after measurement {i + 1}: {ai_kf.x.flatten()}") 

 

1) Explanation: 

• KalmanFilter Class: The base Kalman Filter implementation. 

• AIBasedKalmanFilter Class: This class extends the 

KalmanFilter class and adds a simple imitation learning 
mechanism. 

o In the predict method, after the usual state 

prediction, an adjustment is made to move the 

predicted state closer to an "expert trajectory" 
(which could be an ideal path learned from 

previous expert demonstrations). 

o The adjustment factor (0.1 in this example) can be 
tuned based on how aggressively you want the 
filter to correct its predictions. 

AIBasedKalmanFilter instead of KalmanFilter is used for this AI-
enhanced version in the application. 

The expert_trajectory is replaced with the desired or learned trajectory 

based on expert data. 

 


